

Towards computationally efficient graph generative models for molecular search

Aryan Pedawi, Paweł Gniewek, Chaoyi Chang, Brandon M. Anderson, Henry van den Bedem Atomwise Inc.

Motivation

Search in the non-enumerative regime

- Exponential growth in the size of make-ondemand combinatorial synthesis libraries
- Broad interest in search and search-adjacent problems applied to such libraries
 - Analogue/similarity search
 - Goal-directed search
 - Virtual screening
- Conventional enumerative approaches to these problems face significant limitations with the size of recent combinatorial synthesis libraries

Hoffmann, Torsten, and Marcus Gastreich. "The next level in chemical space navigation: going far beyond enumerable compound libraries." *Drug Discovery Today* 24.5 (2019): 1148-1156.

Motivation

Search in the non-enumerative regime

- Exponential growth in the size of make-ondemand combinatorial synthesis libraries
- Broad interest in search and search-adjacent problems applied to such libraries
 - Analogue/similarity search
 - Goal-directed search
 - Virtual screening
- Conventional enumerative approaches to these problems face significant limitations with the size of recent combinatorial synthesis libraries

Hoffmann, Torsten, and Marcus Gastreich. "The next level in chemical space navigation: going far beyond enumerable compound libraries." *Drug Discovery Today* 24.5 (2019): 1148-1156.

In this work, we develop a new graph generative model specifically tailored for the navigation of ultra-large combinatorial synthesis libraries

Molecular generative models

Molecular generative models

- Lots of attention in developing and applying deep learning-based generative models to molecular datasets
- In goal-directed applications, such methods have shown promise in generating novel compounds with optimized properties
- Two dominant paradigms: string-based and graph-based generative models
 - <u>String-based</u>: SMILES-RNN, DeepSMILES, REINVENT, ...
 - <u>Graph-based</u>: CG-VAE, JT-VAE, RationaleRL, GraphINVENT, ...

Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS Central Science 4.2 (2018): 268-276.

O'Boyle, Noel, and Andrew Dalke. "DeepSMILES: an adaptation of SMILES for use in machine-learning of chemical structures." (2018).

Blaschke, Thomas, et al. "REINVENT 2.0: an AI tool for de novo drug design." Journal of Chemical Information and Modeling 60.12 (2020): 5918-5922.

Liu, Qi, et al. "Constrained graph variational autoencoders for molecule design." Advances in Neural Information Processing Systems 31 (2018).

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Junction tree variational autoencoder for molecular graph generation." International Conference on Machine Learning. PMLR, 2018.

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Multi-objective molecule generation using interpretable substructures." International Conference on Machine Learning. PMLR, 2020. Mercado. Rocío. et al. "Graph networks for molecular design." Machine Learning: Science and Technology 2.2 (2021): 025023.

Autoregression

- In both paradigms, the workhorse has been autoregression
 - Molecules are grown one token (stringbased) or atom/bond (graph-based) at a time, until an "end" token is reached
- Autoregression has limitations
 - Canonicalization
 - Ensuring validity
 - Poor scaling when tasked with generating large molecules

- 1. Cn1c(=O)c2c(ncn2C)n(C)c1=O
- 2. n1cn(C)c2c(=O)n(c(n(C)c21)=O)C
- 3. Cn1c2ncn(C)c2c(n(C)c1=O)=O
- 4. c1n(C)c2c(n(c(=O)n(c2n1)C)C)=O
- 5. Cn1c(=O)c2c(ncn2C)n(c1=O)C

. . .

The in-library constraint

- Many early stage virtual screening pipelines seek to limit exploration to compounds that can be ordered from a make-on-demand catalog
- Existing generative models face significant challenges with satisfying this hard constraint
 - Projecting back to the library via analogue enumeration has limitations, especially with the increasingly larger size of such libraries

The in-library constraint

- Many early stage virtual screening pipelines seek to limit exploration to compounds that can be ordered from a make-on-demand catalog
- Existing generative models face significant challenges with satisfying this hard constraint
 - Projecting back to the library via analogue enumeration has limitations, especially with the increasingly larger size of such libraries

We utilize the structure of combinatorial synthesis libraries to develop a graph generative model that is guaranteed to remain in-library

Our method utilizes minimal autoregression, improving scalability for in-library virtual discovery efforts

Combinatorial synthesis libraries

$$\frac{1}{2}$$

EX. -0

Reaction

EX. R

Reaction **R-Group**

OCI D -/>--D

OC Or D

Combinatorial synthesis libraries

 Combinatorial synthesis libraries (CSLs) are comprised of a potentially large number of such *k*-component synthesis tables

- April 2020 Enamine REAL space
 - 340K synthons
 - 1300 reactions
 - 16B products

Grygorenko, Oleksandr O., et al. "Generating multibilion chemical space of readily accessible screening compounds." iScience 23.11 (2020): 101681.

Architecture

Combinatorial Synthesis Library Variational Auto-Encoder

A new graph generative model to enable navigation of combinatorial synthesis libraries

- We propose a new generative model, called the Combinatorial Synthesis Library Variational Auto-Encoder (CSLVAE), which is tailored to CSLs
 - Satisfies the hard constraint of restricting generated compounds to a provided CSL
 - Decoder design improves on computational complexity compared to existing molecular generative models and analog enumeration approaches

CSLVAE

Overview of architecture

 CSLVAE uses an autoencoder as an engine for database retrieval, fusing deep generative models with neural databases

- Three components:
 - 1. Library encoder
 - 2. Molecular encoder
 - 3. Molecular decoder

Library encoder

Encoding the synthon representations and keys

Library encoder

Encoding the R-group representations

Library encoder

Encoding the reaction representations and keys

Product

Reaction

Molecular encoder

Encoding the query molecule

Molecular decoder

Decoding the reaction type

\land Atomwise

Molecular decoder

Decoding one synthon per R-group given reaction type

Training and inference details

- Training
 - The library encoder is shown mini-batches of the full library during training
 - Each library mini-batch covers a chemical space on the order of a few million compounds
 - Teacher forcing
- Inference
 - Given a CSL, we pre-compute all of the synthon/R-group/reaction representations and keys and cache them to the PyTorch module as buffers
 - The forward call takes a batch of molecular queries as input and retrieves a corresponding batch of compounds from the CSL

Results

Performance on Enamine REAL

	JT-VAE	RationaleRL	CSLVAE (ours)
# Parameters	4.7M	3.4M	380K
Validity	100.0%	100.0%	100.0%
Uniqueness	80.1%	96.3%	98.8%
Average likelihood	18.7%	62.3%	72.4%
In-library proportion	2.9%	50.9%	100.0%

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Junction tree variational autoencoder for molecular graph generation." *International Conference on Machine Learning*. PMLR, 2018.

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Multi-objective molecule generation using interpretable substructures." *International Conference on Machine Learning*. PMLR, 2020.

\land Atomwise

Decoding analogues

Stochastically decoding a molecular query into REAL

0.4311

0.6904

0.8040

0.8122

0.6946

0.6904

0.4311

0.6946

\land Atomwise

Interpolating compounds

Atomwise

Decoding interpolated molecular queries into REAL

(0.8158, 0.2568)

(0.8158, 0.2568)

(0.4955, 0.2414)

(0.1944, 0.1787)

(0.2242, 0.8556)

(0.2353, 1.0000)

© 2022 Atomwise

(0.2625, 0.3882)

(0.2625, 0.3882)

Interpolating compounds

Decoding interpolated molecular queries into REAL

\land Atomwise

Visualizing local neighborhoods

Decoding molecular queries on a random 2D cross-section into REAL

- 1. Sample a random molecular query from the prior
- 2. Sample two random directions
- 3. Form a 2D hyperplane from these three points
- 4. Select molecular queries evenly on this 2D cross-section and decode into REAL
- Qualitative exercise to visualize structure of the learned latent space

-Lange	2009	2009	loog.	20st	3 and	hot	hot	hooty	hot	hoor
-Land	-Land	loog.	Cooly	loog.	and.	hooly	hooly	hooly	200th	hot
Laras	tarad	aras	loog,	loog,	loog,	front	front	front	prost	Poor
oronof	arong	arong	araag	loog,	loog.	food	Pool	Poort	Prost	Poor
50tm	poof	around	provog	loog	Cooly	Prost	prost	Proph	food	Proph
5058	orony	ومعده	~0000	Jung	e or	Proph	Proph	Proph	Poort	Proph
000%	goog	000%	~0000	~0000	Constr.	prosp	prost	prosph	prost	ra-ffi
Kanat	food	proofe	~9000	~9000	foral	ford	Prost	Prost	Prost	ra fr
de la	proving	proph	proote	Loop	Luce	ford	ford	food	rarger	ra-str
paras	فممة	loto	Lotro	~90g	~gogs	geogle	geogy	foral	Sec.	Se la
parto	parto	pone	-lout	gua	Loog	foog	food	- Ser -	ŝ	

Visualizing local neighborhoods

Decoding molecular queries on a random 2D cross-section into REAL

- 1. Sample a random molecular query from the prior
- 2. Sample two random directions
- 3. Form a 2D hyperplane from these three points
- Select molecular queries evenly on this 2D cross-section and decode into REAL
- Qualitative exercise to visualize structure of the learned latent space

Er ar	Earth	En or	20th	2 Ar	20st	20th	3 Ar	2 Ar	4000	two
عيرق	0.8%	South	loog.	hoot	20th	hooly	and the	hote	theo	troo
figs-	ન્દુકુન્દ્	forgo	Soof.	loog.	20th	Sugar.	a and	20th	two	two
Low	-ડક્રેન્સ	foros	fang	loog.	200th	hooly	and the	3 and	arth	-too
Low	2° 29	Corol &	orango	orogo	loog,	Prost	Proph	-Prost	ra-stri	- theo
low	Lours!	Kox	proof	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Conft.	Proph	Prost	ra-ft	raggi	22
port	power	S~4	orooje	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	perty	food	Proph	ranger'	ranger'	22
power	port	ports	Rap	loto	rooge	perech	ŝĘ	AGE .	Sec.	24
port	port	port	porto	serg	bre	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~8.2.2	₹\$Ę	şş	2ª
port	port	porto	parto	and	مطلع	كربهم	into	rethe	detop	22
and	and	porto	sources	source	Suab	react	thoa	موالي	2000	ంయార్తి

Visualizing local neighborhoods

Decoding molecular queries on a random 2D cross-section into REAL

- 1. Sample a random molecular query from the prior
- 2. Sample two random directions
- 3. Form a 2D hyperplane from these three points
- 4. Select molecular queries evenly on this 2D cross-section and decode into REAL
- Qualitative exercise to visualize structure of the learned latent space

o de de	D' Cong	and the	the states	grave	grand	grand	grand	troo	420	4.20
and in	K. A.	de de	and a	hoot	20th	20th	hote	theo	4000	रुद्धिर
Loroto	2.82	-షశీశం	Eught.	hooty	20th	20th	hoose	440	4000	0.00
Earows	5010to	-1.3-18	tand	Soof.	20th	20th	200th	two	4000	0.00
Forons	Earow	Forons	Rood	erangy	loog,	Proof.	Proph	1000	Page 1	200
Jours	Jours	low	X.9%	araad	Coroly	Poort	ra ft	229	22	8580
భిచిస్తు	port	port	d'à	orooto.	Lucy	foogh	ranter,	229	229	229
ange	port	port	port	or of	book	-byd	265°	229	229	8:00
વ્યુપુર	See	port	pare	anost.	guab	Acres	Soul	oath	228	880
anoco	borno	borno	goodo	Brach	Bouch	2000	05420	\$ <u>\$</u>	-83	-33
audo	مىلام	booo	and	ortage	Arto	toget	*38	800	5-40 0	-38

An exercise in CSLVAE's analoging potential

Autoencoding with CSLVAE as an out-of-the-box analoging procedure

- Selected 24 of the <u>FDA Novel Drug</u> <u>Approvals for 2021</u>
- For each compound, we analog into REAL via autoencoding with CSLVAE, and compare to a naive baseline and Arthor (from NextMove) as a source of ground-truth
- For each method, we select 100 compounds and re-compute ECFP4 Tanimoto similarity in RDKit, selecting the top-1 analogue for each
- Boxplot shows distribution of Tanimoto similarities for top-1 analogues

NextMove Software, I. Arthor 3.0, NextMove Software, Inc.: Cambridge, England, 2020.

Wrap-up

Properties of CSLVAE

- Only one step of autoregression in the decoder, irrespective of graph size
- CSLVAE-style retrieval has provably logarithmic computational complexity
- The molecular encoder can take any (valid) molecular graph as input, but the molecular decoder is guaranteed to stay in the library
- CSLVAE is inductive: the CSL is itself an input to the model
- Molecular encoder is permutation invariant, library encoder is permutation equivariant, molecular decoder does not suffer from canonicalization ambiguity

Conclusion

- We develop a new graph generative model, CSLVAE, to enable the navigation of ultra-large combinatorial synthesis libraries
- Our method has favorable scaling properties for non-enumerative libraries
- CSLVAE learns a latent space with "smooth" transitions in chemical space
- We demonstrate CSLVAE's capabilities for out-of-the-box analogue enumeration as a proof-of-concept
- Future work to utilize CSLVAE in a virtual screening context forthcoming

An efficient graph generative model for navigating ultra-large combinatorial synthesis libraries

Aryan PedawiPawel GniewekAtomwise Inc.Atomwise Inc.aryan@atomwise.compawel@atomwise.com

Chaoyi Chang Atomwise Inc. cchang373@atomwise.com

Brandon Anderson*† Atomic AI branderson@gmail.com Henry van den Bedem[†] Atomwise Inc. vdbedem@atomwise.com

Abstract

Virtual, make-on-demand chemical libraries have transformed early-stage drug discovery by unlocking vast, synthetically accessible regions of chemical space. Recent years have witnessed rapid growth in these libraries from millions to trillions of compounds, hiding undiscovered, potent hits for a variety of therapeutic targets. However, they are quickly approaching a size beyond that which permits explicit enumeration, presenting new challenges for virtual screening. To overcome these challenges, we propose the Combinatorial Synthesis Library Variational Auto-Encoder (CSLVAE). The proposed generative model represents such libraries as a differentiable, hierarchically-organized database. Given a compound from the library, the molecular encoder constructs a query for retrieval, which is utilized by the molecular decoder to reconstruct the compound by first decoding its chemical reaction and subsequently decoding its reactants. Our design minimizes autoregression in the decoder, facilitating the generation of large, valid molecular graphs. Our method performs fast and parallel batch inference for ultra-large synthesis libraries, enabling a number of important applications in early-stage drug discovery. Compounds proposed by our method are guaranteed to be in the library, and thus synthetically and cost-effectively accessible. Importantly, CSLVAE can encode out-of-library compounds and search for in-library analogues. In experiments, we demonstrate the capabilities of the proposed method in the navigation of massive combinatorial synthesis libraries.

Aryan Pedawi Atomwise Inc.

aryan@atomwise.com

Thank you!

Co-authors

Paweł Gniewek, Chaoyi Chang, Brandon M. Anderson, Henry van den Bedem

Support

Many wonderful colleagues at Atomwise, and all of you for listening!