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Motivation

Search in the non-enumerative regime

- Exponential growth in the size of make-on-
demand combinatorial synthesis libraries

- Broad interest in search and search-adjacent
problems applied to such libraries

« Analogue/similarity search
« Goal-directed search

- Virtual screening e Approved drugs
) ] p L .y 9335
« Conventional enumerative approaches to these Y, T,
problems face significant limitations with the size e
of recent combinatorial synthesis libraries L o e i cangr s i D
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In this work, we develop a new graph generative model specifically tailored
for the navigation of ultra-large combinatorial synthesis libraries
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Molecular generative models
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Molecular generative models

 Lots of attention in developing and applying deep learning-based
generative models to molecular datasets

* |n goal-directed applications, such methods have shown promise in
generating novel compounds with optimized properties

- Two dominant paradigms: string-based and graph-based generative
models

« String-based: SMILES-RNN, DeepSMILES, REINVENT, ...
» Graph-based: CG-VAE, JT-VAE, RationaleRL, GraphINVENT, ...

Gomez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS Central Science 4.2 (2018): 268-276.

O'Boyle, Noel, and Andrew Dalke. "DeepSMILES: an adaptation of SMILES for use in machine-learning of chemical structures." (2018).

Blaschke, Thomas, et al. "REINVENT 2.0: an Al tool for de novo drug design." Journal of Chemical Information and Modeling 60.12 (2020): 5918-5922.

Liu, Qi, et al. "Constrained graph variational autoencoders for molecule design." Advances in Neural Information Processing Systems 31 (2018).

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Junction tree variational autoencoder for molecular graph generation." International Conference on Machine Learning. PMLR, 2018.
Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Multi-objective molecule generation using interpretable substructures." International Conference on Machine Learning. PMLR, 2020.
Mercado, Rocio, et al. "Graph networks for molecular design." Machine Learning: Science and Technology 2.2 (2021): 025023.
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Autoregression

* In both paradigms, the workhorse has
been autoregression

» Molecules are grown one token (string-
based) or atom/bond (graph-based) at a
time, until an “end” token is reached

 Autoregression has limitations
 Canonicalization
* Ensuring validity

* Poor scaling when tasked with
generating large molecules
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The in-library constraint

« Many early stage virtual screening pipelines seek to limit exploration to
compounds that can be ordered from a make-on-demand catalog

- Existing generative models face significant challenges with satisfying this
hard constraint

* Projecting back to the library via analogue enumeration has limitations, especially
with the increasingly larger size of such libraries
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The in-library constraint

- Many early stage virtual screening pipelines seek to limit exploration to
compounds that can be ordered from a make-on-demand catalog

- Existing generative models face significant challenges with satisfying this
hard constraint

* Projecting back to the library via analogue enumeration has limitations, especially
with the increasingly larger size of such libraries

We utilize the structure of combinatorial synthesis libraries to develop
a graph generative model that is guaranteed to remain in-library

Our method utilizes minimal autoregression, improving
scalability for in-library virtual discovery efforts

&4 Atomwise © 2022 Atormwi



Combinatorial synthesis libraries
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Synthesis tables
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Synthesis tables
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Synthesis tables

Reaction R-Group
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Synthesis tables

Reaction R-Group Synthon

a2 "= T

&4 Atomwise © 2022 Atomwi



Synthesis tables

Reaction R-Group Synthon Product

&4 Atomwise © 2022 Atomwi



Combinatorial synthesis libraries

« Combinatorial synthesis libraries (CSLs) are
comprised of a potentially large number of
such k-component synthesis tables

—
~_
-l Ch
+ April 2020 Enamine REAL space \ |-.J l

* 340K synthons
* 1300 reactions

B I
* 16B products _— \ .1 ,
S— __~

Grygorenko, Oleksandr O., et al. "Generating multibillion chemical space of readily accessible screening compounds." iScience 23.11 (2020): 101681.
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Architecture
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Combinatorial Synthesis Library Variational Auto-Encoder

A new graph generative model to enable navigation of combinatorial synthesis libraries

- We propose a new generative model, called the Combinatorial Synthesis
Library Variational Auto-Encoder (CSLVAE), which is tailored to CSLs

- Satisfies the hard constraint of restricting generated compounds to a
provided CSL

- Decoder design improves on computational complexity compared to
existing molecular generative models and analog enumeration
approaches

Manuscript currently under review
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CSLVAE

Overview of architecture

- CSLVAE uses an autoencoder as an engine for database retrieval,
fusing deep generative models with neural databases
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* Three components:

1. Library encoder
2. Molecular encoder
3. Molecular decoder
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Library encoder

Encoding the synthon representations and keys
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Library encoder

Encoding the R-group representations

Reaction

R-Group

: R-Group .
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Library encoder

Encoding the reaction representations and keys
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Molecular encoder CQ“%’D’”

Encoding the query molecule
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3
Molecular decoder H_ H o

Decoding the reaction type
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3
Molecular decoder M Hamah oo

Decoding one synthon per R-group given reaction type
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Training and inference details

» Training
» The library encoder is shown mini-batches of the full library during training

- Each library mini-batch covers a chemical space on the order of a few million
compounds

+ Teacher forcing

* |Inference

« Given a CSL, we pre-compute all of the synthon/R-group/reaction representations
and keys and cache them to the PyTorch module as buffers

« The forward call takes a batch of molecular queries as input and retrieves a
corresponding batch of compounds from the CSL
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Results
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Performance on Enamine REAL

Reaction accuracy Synthon accuracy Full accuracy
tag: Reaction accuracy tag: Synthon accuracy tag: Full accuracy
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JT-VAE RationaleRLL. CSLVAE (ours)
# Pararneters 4.7M 3 .4M 3 SOK Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Junction tree

variational autoencoder for molecular graph generation." International

Vali di ty 1 OO. O% 100.0% 1 O0.0% Conference on Machine Learning. PMLR, 2018.

Uniqueness 80' ]' % 96'3% 98 . 8% Jin, Wengong, Re_gina I_3arz_i|ay, and Tommi Jaakkola. "Multi-objgctive
Average likelihood | 18.7% 62.3% 72.4% ot o s o R 2oz 1 Mmter
In-library proportion | 2.9% 50.9% 100.0%
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Decoding analogues

Stochastically decoding a molecular query into REAL

SRS | GOy oW e

1.0000 0.6817 0.6416 0.6674

s gavSaa¥s TUNINES ) v e gV U SIS £ vage Vs SR, C vage T o |
0.6717 0.6601 0.6717 0.6488

Coo MO P Ao e

0.7241 0.7185 0.5879 0.6674

sfariante B - G S g PNIIS G v Ag Vs FRIIS £ Vg Vs ot
0.6674 0.7241 0.6717 0.6717
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1.0000 0.8421 0.6946 0.4311
0.7362 0.7795 0.6904 0.6904
0.7795 0.4719 0.4311 0.8040
0.7362 0.8040 0.6946 0.8122
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Interpolating compounds

Decoding interpolated molecular queries into REAL

foour| b8P o Gl |l Ry iy

v

(1.0000, 0.3015) (0.7280, 0.2771) (0.3707, 0.3379) (0.4589, 0.2462) (1.0000, 0.2353) (1.0000, 0.2353) (0.8158, 0.2568) (0.8158, 0.2568)
(0.4589, 0.2462) (0.4589, 0.2462) (0.5020, 0.2511) (0.3783, 0.3812) (0.9133, 0.2195) (0.4955, 0.2414) (0.4955, 0.2414) (0.1944, 0.1787)

(0.2780, 0.6269) (0.2780, 0.6269) (0.2564, 0.6110) (0.2438, 0.5661) (0.2414, 0.3700) (0.2625, 0.3882) (0.2625, 0.3882) (0.2625, 0.3882)

eO%, 0% For? | &9% frg@ '" 3 X

(0.2398, 0.6517) (0.3009, 0.9687) (0.2973, 0.9426) (0.3015, 1.0000) (0.2322, 0.4490) (0.2242, 0.8556) (0.2242, 0.8556) (0.2353, 1.0000)
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Interpolating compounds s

Decoding interpolated molecular queries into REAL
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Visualizing local neighborhoods

Decoding molecular queries on a random 2D cross-section into REAL
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Visualizing local neighborhoods

Decoding molecular queries on a random 2D cross-section into REAL
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Visualizing local neighborhoods

Decoding molecular queries on a random 2D cross-section into REAL
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An exercise in CSLVAE’s analoging potential

Autoencoding with CSLVAE as an out-of-the-box analoging procedure

— CPU time (sec.) « Selected 24 of the FDA Novel Drug

0.7 1 Arthor 30,216.70 ADDI‘OV8|S fOf' 2021
CSLVAE 1At - For each compound, we analog into
0.6 Random - REAL via autoencoding with CSLVAE,

and compare to a naive baseline and
Arthor (from NextMove) as a source of
ground-truth

o
wn

* For each method, we select 100
compounds and re-compute ECFP4
Tanimoto similarity in RDKIit, selecting
the top-1 analogue for each

Tanimoto similarity

o
IS

0.3 -

L i

«  Boxplot shows distribution of Tanimoto
similarities for top-1 analogues

Arthor CSLVAE Random

NextMove Software, I. Arthor 3.0, NextMove Software, Inc.: Cambridge, England, 2020.
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https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2021
https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2021

Wrap-up
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Properties of CSLVAE
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Only one step of autoregression in the decoder, irrespective of graph size
CSLVAE-style retrieval has provably logarithmic computational complexity

The molecular encoder can take any (valid) molecular graph as input, but
the molecular decoder is guaranteed to stay in the library

CSLVAE is inductive: the CSL is itself an input to the model

Molecular encoder is permutation invariant, library encoder is permutation
equivariant, molecular decoder does not suffer from canonicalization
ambiguity




Conclusion
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We develop a new graph generative model, CSLVAE, to enable the
navigation of ultra-large combinatorial synthesis libraries

Our method has favorable scaling properties for non-enumerative libraries
CSLVAE learns a latent space with “smooth” transitions in chemical space

We demonstrate CSLVAE's capabilities for out-of-the-box analogue
enumeration as a proof-of-concept

Future work to utilize CSLVAE in a virtual screening context forthcoming
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Abstract

Virtual, make-on-demand chemical libraries have transformed early-stage drug
discovery by unlocking vast, synthetically accessible regions of chemical space. Re-
cent years have witnessed rapid growth in these libraries from millions to trillions
of compounds, hiding undiscovered, potent hits for a variety of therapeutic targets.
However, they are quickly approaching a size beyond that which permits explicit
enumeration, presenting new challenges for virtual screening. To overcome these
challenges, we propose the Combinatorial Synthesis Library Variational Auto-
Encoder (CSLVAE). The proposed generative model represents such libraries as
a differentiable, hierarchically-organized database. Given a compound from the
library, the molecular encoder constructs a query for retrieval, which is utilized by
the molecular decoder to reconstruct the compound by first decoding its chemical
reaction and subsequently decoding its reactants. Our design minimizes autore-
gression in the decoder, facilitating the generation of large, valid molecular graphs.
Our method performs fast and parallel batch inference for ultra-large synthesis
libraries, enabling a number of important applications in early-stage drug discovery.
Compounds proposed by our method are guaranteed to be in the library, and thus
synthetically and cost-effectively accessible. Importantly, CSLVAE can encode
out-of-library compounds and search for in-library analogues. In experiments, we
demonstrate the capabilities of the proposed method in the navigation of massive
combinatorial synthesis libraries.
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