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Motivation
Search in the non-enumerative regime
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Hoffmann, Torsten, and Marcus Gastreich. "The next level in chemical space 
navigation: going far beyond enumerable compound libraries." Drug Discovery 
Today 24.5 (2019): 1148-1156.

• Exponential growth in the size of make-on- 
demand combinatorial synthesis libraries

• Broad interest in search and search-adjacent 
problems applied to such libraries

• Analogue/similarity search
• Goal-directed search
• Virtual screening

• Conventional enumerative approaches to these 
problems face significant limitations with the size 
of recent combinatorial synthesis libraries
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demand combinatorial synthesis libraries

• Broad interest in search and search-adjacent 
problems applied to such libraries

• Analogue/similarity search
• Goal-directed search
• Virtual screening

• Conventional enumerative approaches to these 
problems face significant limitations with the size 
of recent combinatorial synthesis libraries

In this work, we develop a new graph generative model specifically tailored 
for the navigation of ultra-large combinatorial synthesis libraries

Hoffmann, Torsten, and Marcus Gastreich. "The next level in chemical space 
navigation: going far beyond enumerable compound libraries." Drug Discovery 
Today 24.5 (2019): 1148-1156.
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Molecular generative models
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Molecular generative models
• Lots of attention in developing and applying deep learning-based 

generative models to molecular datasets

• In goal-directed applications, such methods have shown promise in 
generating novel compounds with optimized properties

• Two dominant paradigms: string-based and graph-based generative 
models
• String-based: SMILES-RNN, DeepSMILES, REINVENT, …

• Graph-based: CG-VAE, JT-VAE, RationaleRL, GraphINVENT, …

4

Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS Central Science 4.2 (2018): 268-276.
O'Boyle, Noel, and Andrew Dalke. "DeepSMILES: an adaptation of SMILES for use in machine-learning of chemical structures." (2018).
Blaschke, Thomas, et al. "REINVENT 2.0: an AI tool for de novo drug design." Journal of Chemical Information and Modeling 60.12 (2020): 5918-5922.
Liu, Qi, et al. "Constrained graph variational autoencoders for molecule design." Advances in Neural Information Processing Systems 31 (2018).
Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Junction tree variational autoencoder for molecular graph generation." International Conference on Machine Learning. PMLR, 2018.
Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Multi-objective molecule generation using interpretable substructures." International Conference on Machine Learning. PMLR, 2020.
Mercado, Rocío, et al. "Graph networks for molecular design." Machine Learning: Science and Technology 2.2 (2021): 025023.



© 2022 Atomwise

Autoregression

• In both paradigms, the workhorse has 
been autoregression
• Molecules are grown one token (string- 

based) or atom/bond (graph-based) at a 
time, until an “end” token is reached

• Autoregression has limitations
• Canonicalization

• Ensuring validity

• Poor scaling when tasked with 
generating large molecules

5

1. Cn1c(=O)c2c(ncn2C)n(C)c1=O
2. n1cn(C)c2c(=O)n(c(n(C)c21)=O)C
3. Cn1c2ncn(C)c2c(n(C)c1=O)=O
4. c1n(C)c2c(n(c(=O)n(c2n1)C)C)=O
5. Cn1c(=O)c2c(ncn2C)n(c1=O)C

  …

Caffeine
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The in-library constraint

• Many early stage virtual screening pipelines seek to limit exploration to 
compounds that can be ordered from a make-on-demand catalog

• Existing generative models face significant challenges with satisfying this 
hard constraint
• Projecting back to the library via analogue enumeration has limitations, especially 

with the increasingly larger size of such libraries

6
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We utilize the structure of combinatorial synthesis libraries to develop 
a graph generative model that is guaranteed to remain in-library

Our method utilizes minimal autoregression, improving 
scalability for in-library virtual discovery efforts
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Combinatorial synthesis libraries
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Synthesis tables

9



© 2022 Atomwise

Synthesis tables

10

Reaction



© 2022 Atomwise

Synthesis tables
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Reaction R-Group



© 2022 Atomwise

Synthesis tables
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Reaction R-Group Synthon
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Synthesis tables
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Reaction R-Group Synthon Product
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Combinatorial synthesis libraries

• Combinatorial synthesis libraries (CSLs) are 
comprised of a potentially large number of 
such k-component synthesis tables

• April 2020 Enamine REAL space

• 340K synthons
• 1300 reactions
• 16B products

14

Grygorenko, Oleksandr O., et al. "Generating multibillion chemical space of readily accessible screening compounds." iScience 23.11 (2020): 101681.
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Architecture
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Combinatorial Synthesis Library Variational Auto-Encoder

• We propose a new generative model, called the Combinatorial Synthesis 
Library Variational Auto-Encoder (CSLVAE), which is tailored to CSLs

• Satisfies the hard constraint of restricting generated compounds to a 
provided CSL

• Decoder design improves on computational complexity compared to 
existing molecular generative models and analog enumeration 
approaches

16

A new graph generative model to enable navigation of combinatorial synthesis libraries

Manuscript currently under review
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CSLVAE

• CSLVAE uses an autoencoder as an engine for database retrieval, 
fusing deep generative models with neural databases

• Three components:
1. Library encoder
2. Molecular encoder
3. Molecular decoder

17

Overview of architecture
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Library encoder
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Library encoder
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Library encoder
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Molecular encoder
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Molecular decoder
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Molecular decoder
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Decoding one synthon per R-group given reaction type
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Training and inference details
• Training

• The library encoder is shown mini-batches of the full library during training
• Each library mini-batch covers a chemical space on the order of a few million 

compounds
• Teacher forcing

• Inference
• Given a CSL, we pre-compute all of the synthon/R-group/reaction representations 

and keys and cache them to the PyTorch module as buffers
• The forward call takes a batch of molecular queries as input and retrieves a 

corresponding batch of compounds from the CSL

24
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Results
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Performance on Enamine REAL
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Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Junction tree 
variational autoencoder for molecular graph generation." International 
Conference on Machine Learning. PMLR, 2018.

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Multi-objective 
molecule generation using interpretable substructures." International 
Conference on Machine Learning. PMLR, 2020.
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Decoding analogues
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Stochastically decoding a molecular query into REAL

1.0000 0.6817 0.6416 0.6674

0.6717 0.6601 0.6717 0.6488

0.7241 0.7185 0.5879 0.6674

0.6674 0.7241 0.6717 0.6717

1.0000 0.8421 0.6946 0.4311

0.7362 0.7795 0.6904 0.6904

0.7795 0.4719 0.4311 0.8040

0.7362 0.8040 0.6946 0.8122
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Interpolating compounds
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Decoding interpolated molecular queries into REAL

(1.0000, 0.2353) (1.0000, 0.2353) (0.8158, 0.2568) (0.8158, 0.2568)

(0.9133, 0.2195) (0.4955, 0.2414) (0.4955, 0.2414) (0.1944, 0.1787)

(0.2414, 0.3700) (0.2625, 0.3882) (0.2625, 0.3882) (0.2625, 0.3882)

(0.2322, 0.4490) (0.2242, 0.8556) (0.2242, 0.8556) (0.2353, 1.0000)

(1.0000, 0.3015) (0.7280, 0.2771) (0.3707, 0.3379) (0.4589, 0.2462)

(0.4589, 0.2462) (0.4589, 0.2462) (0.5020, 0.2511) (0.3783, 0.3812)

(0.2780, 0.6269) (0.2780, 0.6269) (0.2564, 0.6110) (0.2438, 0.5661)

(0.2398, 0.6517) (0.3009, 0.9687) (0.2973, 0.9426) (0.3015, 1.0000)
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Visualizing local neighborhoods
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Decoding molecular queries on a random 2D cross-section into REAL

1. Sample a random 
molecular query from 
the prior

2. Sample two random 
directions

3. Form a 2D hyperplane 
from these three points

4. Select molecular 
queries evenly on this 
2D cross-section and 
decode into REAL

➢ Qualitative exercise to 
visualize structure of 
the learned latent 
space
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An exercise in CSLVAE’s analoging potential

33

Autoencoding with CSLVAE as an out-of-the-box analoging procedure

CPU time (sec.)

Arthor 30,216.70

CSLVAE 11.41

Random –

• Selected 24 of the FDA Novel Drug 
Approvals for 2021

• For each compound, we analog into 
REAL via autoencoding with CSLVAE, 
and compare to a naive baseline and 
Arthor (from NextMove) as a source of 
ground-truth

• For each method, we select 100 
compounds and re-compute ECFP4 
Tanimoto similarity in RDKit, selecting 
the top-1 analogue for each

• Boxplot shows distribution of Tanimoto 
similarities for top-1 analogues

NextMove Software, I. Arthor 3.0, NextMove Software, Inc.: Cambridge, England, 2020.

https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2021
https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2021
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Wrap-up

34
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Properties of CSLVAE
• Only one step of autoregression in the decoder, irrespective of graph size

• CSLVAE-style retrieval has provably logarithmic computational complexity

• The molecular encoder can take any (valid) molecular graph as input, but 
the molecular decoder is guaranteed to stay in the library

• CSLVAE is inductive: the CSL is itself an input to the model

• Molecular encoder is permutation invariant, library encoder is permutation 
equivariant, molecular decoder does not suffer from canonicalization 
ambiguity

35
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Conclusion
• We develop a new graph generative model, CSLVAE, to enable the 

navigation of ultra-large combinatorial synthesis libraries

• Our method has favorable scaling properties for non-enumerative libraries

• CSLVAE learns a latent space with “smooth” transitions in chemical space

• We demonstrate CSLVAE’s capabilities for out-of-the-box analogue 
enumeration as a proof-of-concept

• Future work to utilize CSLVAE in a virtual screening context forthcoming

36
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