

Synthetic benchmarks to evaluate attribution for structure-based graph convolutional networks in drug discovery

<u>Andreana Rosnik, PhD;</u> Kate A. Stafford, PhD; Brandon Anderson, PhD; Henry van den Bedem, PhD

March 23, 2022

Creating interpretable deep learning models

- Interpreting a deep learning (DL) model is challenging
- For drug discovery it's important to understand what our models are learning:
 - Does it make chemical sense?
 - Are the models biased or cheating?
- We use attention mechanisms to attribute information to nodes (atoms) and edges
- Which atoms contribute to ...
 - Pose sensitivity?
 - Activity prediction?
 - pKi regression?

Attention as an attribution technique

- Attention is a process of mapping intermediate DL model outputs back to initial inputs to determine which features were best captured by the model
- "using attention as an attribution technique performed poorly"
 - the degree to which (raw) edge weights map onto absolute contribution varies by context

Evaluating Attribution for Graph Neural Networks

Benjamin Sanchez-Lengeling^{1,5}, Jennifer Wei¹, Brian Lee¹, Emily Reif¹, Peter Y. Wang², Wesley Wei Qian^{1,3}, Kevin McCloskey¹, Lucy Colwell^{1,4}, and Alexander Wiltschko^{1,5}

¹Google Research ²Stanford University, work done while a resident at X. ³University of Illinois at Urbana-Champaign ⁴University of Cambridge ⁵Email: {bmsanchez, alexbw}@google.com NeurIPS 2020

- See also:
 - Interpretation of QSAR Models by Coloring Atoms According to Changes in Predicted Activity: How Robust Is It, *J. Chem. Inf. Model.* (doi: <u>10.1021/acs.jcim.8b00825</u>)

\land Atomwise

Attention as an attribution technique

- <u>Hypothesis</u>: Atom-based attention is most informative for information gained from atoms that most closely interact with the receptor
- Ligand atoms share edges with many receptor atoms. Which edges are important?
- <u>Edge entropy</u> = entropy of the edges connecting each node to its neighbors
- For any node/atom, we can calculate the Shannon entropy over the edge attention weights $\{\alpha_{ij}\}_{j \in N_i}$

$$H(lpha_i) = -\sum_{j \in \mathcal{N}_i} lpha_{ij} \log{(lpha_{ij})} \; .$$

• <u>Relative entropy</u>: way to measure information gain

$$-\sum_{j\in\mathcal{N}_i}lpha_{ij}\log\left(lpha_{ij}|\mathcal{N}_i|
ight)$$

blue: atom has no contact within 5Å (provide no information gain) red: one or more contacts have greater weight

Benchmarks move interpretability towards quantification

- Most work in the field is anecdotal
- Our project addresses:
 - Is attention a valid attribution technique for drug discovery problems?
 - Can we develop a synthetic benchmark to evaluate attention's applicability?
 - Can attention models (and benchmarks) help us understand ligand poses?

Matveieva and Polishchuk *J Cheminform* (2021) 13:41 https://doi.org/10.1186/s13321-021-00519-x

Benchmarks for interpretation of QSAR models

Dataset	Property type	End-point	Train/test set size	Expected atom contribution
N	Regression	Sum(N)	6995/2999	Nitrogen atoms: 1; others: 0
N – O	Regression	Sum(N) — sum(O)	6893/2969	Nitrogen atoms: 1; Oxygen atoms: – 1; others 0
N+0	Regression	(Sum(N) + sum(O))/2, where $sum(N) = sum(O)$	7000/3000	Nitrogen and Oxygen atoms: 0.5; others: 0
Amide_reg	Regression	Sum(NC=O)	7000/3001	Any atom of amide groups: 1; others: 0
Amide_class	Classification	Active: if sum(NC=O) > 0; inactive: if sum(NC=O) = 0	6998/3000	Any atom of amide groups: 1; others: 0
Pharmacophore	Classification	Active: at least one conformer with exactly one pharmacophore match (same two atoms in all conformers); inactive: no pharmacophore matches for all conform- ers; pharmacophore match: HBD and HBA 9–10 Å apart	7000/3000	Atoms which are HBA or HBD of the pharma- cophore: 1; others: 0

Hydrogen bond synthetic benchmark: data preparation

- Model trained to predict number of h-bonds
 - This is a quantity for which we know the ground truth. The question is, will the attention mechanism figure that out?
- Hydrogen bond calculation: count number of {N,O} h-bonds
 - distance cut-off 3.5 Å
 - angle cut-off 45°
- Dataset: PDB data containing binding affinity data, cross-docked, split by 50% sequence similarity (7049 / 3126 targets train/test, ~7.5M poses)
 - cross-docking = docking compounds to different crystal structures of same protein (identified by uniprot)
 - PDB data contains data from: PDBBind, BindingDB, BindingMOAD

Model architecture

- Model:
 - AtomNet® model variant GRAPHite
 - convolutional layers: [rl,rl,rl,l,l,l]
 - attention: [true,true,true,false,false]
- Trained on three different labels, for the sake of comparison:
 - hydrogen bond count prediction
 - pose classification
 - pKi regression

Architecture of AtomNet® model variant GRAPHite, a directional Message Passing Neural Network, Fig 3 from:

AtomNet® PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in Virtual High-Throughput Screens, *J. Chem. Inf. Model.* (doi: <u>10.1021/acs.jcim.1c01250</u>)

Model training

- Hydrogen bond counting is a very easy task
- Attention doesn't alter convergence much, though it slows training 2-3x

Anecdotes: same architecture, different labels

Anecdotes: same architecture, different labels

- Models trained on different labels tend to highlight features chemically intuitive to their label
 - hydrogen bond models light up for hydroxyl or amine groups
 - pose models have diffuse areas of entropy gain, since the entirety of the scaffold is relevant
 - pKi models highlight
 R-groups

Edge entropy values by element

- Adding attention to edges makes a big difference in hbond models: {N,O} indeed get attention
- Attention on the pose labels highlights atoms most prevalent in scaffolds

Anecdotes: what can we learn about pose quality?

- Hypothesis: regardless of labels, more low entropy regions for worse poses, since there may be more atoms further from receptor atoms
- In some cases, there are more low entropy spots when sorting by *either* pose rank or RMSD
 - tends to occur for ligands with halogens

0.15

0.10

- 0.05

0.00

-0.05

-0.10

Anecdotes: what can we learn about pose quality?

\land Atomwise

Heatmap signatures: pose quality signals arise

- Singular values of heatmap matrices for hydrogen bond models differ between models with and without attention
- Aggregating by element, we get results similar to simple aggregation of edge entropy values by element
- Perhaps singular value decomposition can uncover more features...

Attention highlights top poses from the rest

- For 5844 randomly selected target-compound pairs,
 - best-ranked poses have the narrowest distribution in maximum entropy values
 - standard deviation in relative edge entropy trends upward as pose rank increases
- The trends for poses 0-5 disappear when attention is absent → attention is (slightly) pose sensitive!

Summary

- Attention works as an attribution mechanism for simple, atom-based properties (like hydrogen bonds) for which we have a ground truth answer
- Hydrogen bond benchmarks are easy to train and appear to learn hydrogen bonds: attention-based models have higher entropy for N and O atoms
- Atom-based attention models perform less well for noisier problems (like pose classification); further investigation is necessary to understand what can be gleaned from attention models in these contexts

Acknowledgements

•My co-authors:

- Kate
- Brandon
- Henry
- The entire cheminformatics team at Atomwise
- •You, for listening!

Andreana Rosnik, PhD

Cheminformatics Scientist II Atomwise Inc.

andreana@atomwise.com

We're hiring!

Learn more about Atomwise: https://www.atomwise.com/careers/ Read more about our work: https://blog.atomwise.com/ Atomwise at ACS:

https://info.atomwise.com/acs_spring2022