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Disclaimer

• I’m a statistician by training, not a chemist
• Some of my interests:

• Applying statistics to interesting/important problems in the sciences
• Applying statistics to state-of-the-art machine learning systems, especially 

deep neural networks
• This talk is mainly focused on the statistics, but with a lot of visuals 

to gently introduce the concepts and their relevance
• At the end, we will look at an application in chemistry to ground 

things
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Motivation

• Neural networks are increasingly being utilized in virtual high throughput 
screening of large compound libraries

• Premium for reliability
• Point predictors vs. interval predictors
• Growing understanding in the statistics/ML community on how to make 

interval predictors statistically rigorous
• We apply these ideas to NN-based molecular property prediction and 

develop some new ideas along the way
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Uncertainty quantification

• Uncertainty quantification should be reliable

• If a model predicts that an event will occur with 90% probability, then 
across all such predictions, the event should occur 90% of the time

• This property is sometimes called coverage

• Uncertainty quantification should be useful

• Overly broad or non-adaptive prediction intervals aren’t helpful

• Easy (cf. hard) examples → tight (cf. wide) prediction intervals
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Reliability vs. usefulness
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Interval predictors

• We consider prediction tasks from an input domain X to a target 
domain Y ⊆ ℝ

• We focus on set-valued predictors C𝛽: X → ΔY
• A function that takes x as input and returns a prediction interval 

C𝛽(x) over plausible values of y
• 𝛽 ∈ (0, 1) is the desired confidence level

4

Preliminaries and notation
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Reliability desiderata

Suppose we have a set-valued function C𝛽(x) which 
returns a 100𝛽% prediction interval. We would like the 
following:

1. Marginal (or, unconditional) coverage guarantee
• Pr[y ∈ C𝛽(x)] ≈ 𝛽

2. Conditional coverage guarantee
• Pr[y ∈ C𝛽(x) | x] ≈ 𝛽

3. Balanced coverage guarantee (for interval predictors)
• Pr[y > C𝛽(x)] ≈ Pr[y < C𝛽(x)]
• Pr[y > C𝛽(x) | x] ≈ Pr[y < C𝛽(x) | x]

5

Notions of coverage
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Suppose we have a set-valued function C𝛽(x) which 
returns a 100𝛽% prediction interval. We would like the 
following:

1. Marginal (or, unconditional) coverage guarantee
• Pr[y ∈ C𝛽(x)] ≈ 𝛽

2. Conditional coverage guarantee
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Notions of coverage

Easy

Hard
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Consider the distribution p*(x, y), 
defined as follows[1]:

x ~ Uniform(-3π, 3π)
z1 ~ Normal(0, 1)
z2 ~ Normal(0, 1)
u ~ Uniform(0, 1)
v ~ Poisson(sin2(x) + 0.1)
y = v + 0.03 x z1 + 25 I[u < 0.01] z2

[1] Romano, Y., Patterson, E., & Candes, E. (2019). Conformalized quantile regression. Advances in Neural Information Processing Systems, 32.
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* Assuming objective is to maximize expected profit.

Imagine the following game:

• We are given a dataset D of (x, y) pairs 
from p*(x, y), as shown to the left

• A new pair is sampled from p*(x, y)

• We observe x, but y is hidden

• We can pay 5¢ to reveal y

• If y > 3, we get $1; otherwise, we get $0

• When should we take the gamble*?
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Imagine the following game:

• We are given a dataset D of (x, y) pairs 
from p*(x, y), as shown to the left

• A new pair is sampled from p*(x, y)

• We observe x, but y is hidden

• We can pay 5¢ to reveal y

• If y > 3, we get $1; otherwise, we get $0

• When should we take the gamble*?

• When Pr[Y > 3 | D, X = x] ≥ 5%

* Assuming objective is to maximize expected profit.
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Overly simple stylized 1d example of 
problems in drug discovery

Given a set of molecule-endpoint pairs, 
we wish to identify regions of chemical 
space where the probability of finding a 
promising candidate is sufficiently high

Formally, given a dataset Dn ∈ (X, Y)n, 
we wish to find regions Z ⊂ X such that 
Pr[Y > t | Dn, X ∈ Z] ≥ 1 - 𝛽
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Let’s make things simpler: suppose we 
don’t know the value of the new x, other 
than it is in the interval (-3π, 3π)

Can use D to estimate the CDF of y 
non-parametrically, i.e., via a counting 
procedure:

F(y | D) = Pr[Y < y | D] = n-1∑i [yi < y]
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We fit an empirical CDF to 100 observations from D
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Color indicates the corresponding quantile, with blue for 𝛽 = 0 for and red for 𝛽 = 1
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We can color values of y based on its associated quantile
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The 95% quantile of y is ~2, which is less than 3
Hence, in the absence of further information, we reject the gamble
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Root Brier score  0.0428
Max. over-coverage gap 7.74 ppt
Max. under-coverage gap 3.24 ppt

This predictor is reliable (in the marginal sense), but is it useful?
Can be do better by conditioning on x?
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Quantile regression

• Regression variant which strives for a consistent estimator of the 
conditional quantile function
• As opposed to standard least squares regression, which strives for a 

consistent estimator of the conditional expectation function
• Quantiles are:

• Robust
• Fully descriptive of the conditional distribution
• Equivariant to transformations that often plague likelihood-based inference

• Scale/shift
• Monotonic transformations (log, power-law, etc.)

18

Estimating the conditional quantile function
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Parametric procedure for estimating the desired conditional quantile is to carry out 
minimization with the check function

Given a set of n observations, a consistent estimator for the 𝛽-quantile of y | x is given 
by:

𝜃𝛽 = argmin𝜃 n
-1 ∑i ℓ𝛽(yi - q𝛽(xi; 𝜃)), where ℓ𝛽(𝜀) = 𝛽 |𝜀| [𝜀 > 0] + (1 - 𝛽) |𝜀| [𝜀 ≤ 0]

is the check function

⟨
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X Neural 
Network 𝜃

𝛽

Monotonic 
Spline

𝜓

y𝛽

⟨
Variables
Parameters
Function class

Quantile regression spline neural network
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Training

Train end-to-end using the following procedure[2]:

1. Sample a minibatch of (x, y) pairs
2. Sample a minibatch of quantiles 𝛽 ~ Uniform(0, 1)
3. Pass the x’s through the neural network to get 𝜃’s
4. Pass the 𝛽’s through the monotonic spline to get y𝛽 ’s
5. Compute the check function losses and average
6. Backprop

21

[2] Tagasovska, N., & Lopez-Paz, D. (2019). Single-model uncertainties for deep learning. Advances in Neural Information Processing Systems, 32.

⟨

Estimating the full predictive distribution
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• Quantile regression neural networks can 
provide estimated prediction intervals 
for any x

• On this toy problem, the network 
correctly identifies regions where     Pr[Y 
> 3 | D, X = x] ≥ 5%

• Prediction interval length is highly 
adaptive with respect to x

• Training makes no assumptions about 
the likelihood of y given x

• Minimization of the check function loss 
corresponds to a type of M-estimator 
and comes with associated robustness
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Root Brier score  0.0209
Max. over-coverage gap 8.54 ppt
Max. under-coverage gap 2.13 ppt

Coverage looks pretty good!
But in general, we don’t have rigorous (finite sample) statistical guarantees



© 2022 Atomwise

Any function can be made marginally reliable

• Suppose that, in addition to a fitted quantile function q𝛽(x), we have a 
held-out calibration set Dcal = {(xi, yi) : i = 1, …, ncal}

• Let E𝛽
cal = {yi - q𝛽(xi) : i = 1, …, ncal} denote the residuals associated with 

quantile 𝛽 on the calibration data

• Consider the adjusted predictor,

q𝛽(x) = q𝛽(x) + Q𝛽(E
𝛽
cal),

where Q𝛽 computes the 𝛽-quantile of ECDF associated with Ecal

• For (x, y) exchangeable with Dcal, the predictor q𝛽(x) marginally covers

24
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Using conformalization to confer marginal coverage guarantees

⟨

⟨
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Any function can be made marginally reliable

• If q𝛽(x) = 0 everywhere…

• E𝛽
cal = {yi - q𝛽(xi) : i = 1, …, ncal}

• q𝛽(x) = q𝛽(x) + Q𝛽(E
𝛽
cal)

25
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Using conformalization to confer marginal coverage guarantees
⟨

X
X
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Any function can be made marginally reliable

• If q𝛽(x) = 0 everywhere…

• E𝛽
cal = {yi - q𝛽(xi) : i = 1, …, ncal}

• q𝛽(x) = q𝛽(x) + Q𝛽(E
𝛽
cal)

• This is exactly the first predictor 
we looked at!
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Using conformalization to confer marginal coverage guarantees
⟨
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Any function can be made marginally reliable

• This procedure is an instance of conformalization[3][4], and its 
associated marginal coverage guarantees do not require any 
assumptions about the initial predictor q𝛽(x)

• All that is required is exchangeability of test instances with the 
calibration set

• The better q𝛽(x) approximates the true conditional quantile function, the 
less correction is required as part of the conformalization step

27

Using conformalization to confer marginal coverage guarantees

⟨

⟨

[3] Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.
[4] Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic learning in a random world. Springer Science & Business Media.
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Null 
predictor

Conditional 
mean 

predictor

Conditional 
quantile 
predictor

Bad 
predictor

Worse 
predictor

Minor 
corrections 

required

Major 
corrections 

required

Spectrum of heuristic predictors
“All models are wrong, but some are useful”
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Root Brier score  0.0176
Max. over-coverage gap 4.44 ppt
Max. under-coverage gap 0.48 ppt

Root Brier score  0.0209
Max. over-coverage gap 8.54 ppt
Max. under-coverage gap 2.13 ppt

Before conformalization After conformalization
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Before conformalization After conformalization
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Uncertainty quantification in higher dimensions

• The curse of dimensionality poses challenges for reliable uncertainty 
estimation

• With increasing dimensionality, data become more spread out

• Highly flexible models like NNs can memorize examples that are 
easily separable (overfitting) 

• As such, quantile regression networks can become very concentrated 
in their predictions on the training set (tight prediction intervals)

• As a consequence, such models may fail to leverage their uncertainty 
capabilities and collapse to point predictors

31

Challenges when moving beyond toy problems
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Uncertainty quantification in higher dimensions

• Motivates greater need for regularization in such regimes

• In addition to usual regularization strategies for NNs, we investigate a 
number of consistency-style regularizers for quantile regression

• Calibration-based regularizers (own work)

• Independence of interval length and miscoverage events[5]

32

[5] Feldman, S., Bates, S., & Romano, Y. (2021). Improving conditional coverage via orthogonal quantile regression. Advances in Neural Information Processing Systems, 34.

Challenges when moving beyond toy problems
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Lipophilicity benchmark

• We apply these ideas to a dataset[6] of 4200 compounds 
curated from ChEMBL with experimental results of 
octanol/water distribution coefficient (logD at pH 7.4)

• 80-10-10 split of the compounds into training, validation, and 
testing sets

• The training set and validation/testing sets are split by scaffold
• The validation and testing sets are split at random

• We will use the validation set for conformalization

• Random splitting in this way is sufficient for exchangeability, 
which guarantees marginal coverage on the test set

33

Experimental setup

[6] Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., ... & Pande, V. (2018). MoleculeNet: a benchmark for molecular machine learning. Chemical Science, 9(2), 513-530.
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Lipophilicity benchmark

• Across all experiments, we use the same:
• Architecture (message passing graph neural network)
• Optimizer (Adam, lr=1e-4)
• Checkpoint selection criteria (best validation RMSE)
• Model regularization (layer normalization, dropout, weight decay)
• Batch size, max number of iterations, etc.

• After training, we use the validation set to conformalize 90% 
prediction intervals for each model

• Marginal coverage on test set after conformalization ranged 
from 88.7% - 91.6%

34

Experimental setup
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squared error loss squared error loss
+ heteroskedasticity

check function loss check function loss
+ calibration reg.

check function loss
+ orthogonality reg.

check function loss
+ calibration reg.

+ orthogonality reg.

interval score loss interval score loss
+ calibration reg.

interval score loss
+ orthogonality reg.

interval score loss
+ calibration reg.

+ orthogonality reg.
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Root Brier score  0.0227
Max. over-coverage gap 0.38 ppt
Max. under-coverage gap 5.01 ppt
Avg. pred. interval length 3.96

Root Brier score  0.2824
Max. over-coverage gap 42.81 ppt
Max. under-coverage gap 51.62 ppt
Avg. pred. interval length 0.33

Inadequate regularization → memorization → unrealistically tight prediction intervals → 
strong correction required → unusably wide (post-correction) prediction intervals

Before conformalization After conformalization



© 2022 Atomwise37

Root Brier score  0.0265
Max. over-coverage gap 3.71 ppt
Max. under-coverage gap 5.24 ppt
Avg. pred. interval length 3.01

Root Brier score  0.1013
Max. over-coverage gap 18.76 ppt
Max. under-coverage gap 13.95 ppt
Avg. pred. interval length 1.77

Appropriate regularization drastically improves generalization of interval 
predictors, permitting tighter post-correction prediction intervals

Before conformalization After conformalization
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Regression variants by RMSE

38

↗   1.4%
↗   3.2%
↗   1.6%
↗   0.4%
↗   6.5%
↗   3.4%
↗   5.1%
↗   0.5%

↗ 12.8%

Regression variants did not differ significantly in test RMSE on lipophilicity benchmark
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Regression variants by avg. interval length

39

↘   8.2%
↘ 15.4%
↘ 13.1%
↘ 24.0%
↘ 18.4%
↘ 16.9%
↘ 21.4%
↘ 26.6%

↗ 12.7%

Quantile regression yields tighter PIs on lipophilicity benchmark for the same marginal coverage
Consistency-regularized variants offer additional improvements
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Explaining RMSE differences

40

Quantile regression did not improve test RMSE on lipophilicity benchmark

OLS Regression Results                            
====================================================================================
Dep. Variable:                    log(rmse)   R-squared:                       0.310
Model:                                  OLS   Adj. R-squared:                 -0.242
Method:                       Least Squares   F-statistic:                    0.5621
No. Observations:                        10   Prob (F-statistic):              0.702
Df Residuals:                             5   Log-Likelihood:                 21.239
Df Model:                                 4   AIC:                            -32.48
Covariance Type:                  nonrobust   BIC:                            -30.97
====================================================================================
                      coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------------
Intercept          -0.2682 ***  0.029     -9.272      0.000      -0.343      -0.194
check              -0.0269      0.041     -0.656      0.541      -0.132       0.078
interval           -0.0052      0.041     -0.127      0.904      -0.110       0.100
calibration        -0.0168      0.029     -0.580      0.587      -0.091       0.058
orthogonality      -0.0166      0.029     -0.573      0.591      -0.091       0.058
====================================================================================
Omnibus:                        2.486        Durbin-Watson:                   2.819
Prob(Omnibus):                  0.289        Jarque-Bera (JB):                0.249
Skew:                          -0.022        Prob(JB):                        0.883
Kurtosis:                       3.771        Cond. No.                         6.20
====================================================================================

***   significance @  1%
**    significance @  5%
*     significance @ 10%

No significant 
differences in RMSE 
across the regression 
variants considered
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Explaining avg. PI length differences

41

Quantile regression induces statistically significantly tighter PIs on lipophilicity benchmark

OLS Regression Results                                  
====================================================================================
Dep. Variable:  log(avg_interval_length_90)   R-squared:                       0.914
Model:                                  OLS   Adj. R-squared:                  0.845
Method:                       Least Squares   F-statistic:                     13.29
No. Observations:                        10   Prob (F-statistic):            0.00712
Df Residuals:                             5   Log-Likelihood:                 18.992
Df Model:                                 4   AIC:                            -27.98
Covariance Type:                  nonrobust   BIC:                            -26.47
====================================================================================
                      coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------------
Intercept           1.0420 ***  0.036     28.768      0.000       0.949       1.135
check              -0.1531 **   0.051     -2.990      0.030      -0.285      -0.021
interval           -0.2205 ***  0.051     -4.304      0.008      -0.352      -0.089
calibration        -0.0663      0.036     -1.829      0.127      -0.159       0.027
orthogonality      -0.0810 *    0.036     -2.235      0.076      -0.174       0.012
====================================================================================
Omnibus:                        0.254        Durbin-Watson:                   2.472
Prob(Omnibus):                  0.881        Jarque-Bera (JB):                0.402
Skew:                           0.000        Prob(JB):                        0.818
Kurtosis:                       2.017        Cond. No.                         6.20
====================================================================================

***   significance @  1%
**    significance @  5%
*     significance @ 10%

Conformalized quantile 
regression induces a 

~15-22% reduction in 
average 90% PI length 

compared to con- 
formalized likelihood- 

based regression

Orthogonality 
regularization induces 

an additional ~8% 
reduction in average 

90% PI length
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Conclusion

• Quantile regression combined with ideas from conformal inference make for 
reliable and adaptive uncertainty quantification

• In high dimensional settings (e.g., working with molecular graphs or large 
molecular descriptors), need to think carefully about regularization

• By predicting conditional quantiles directly, we can form adaptive prediction 
intervals which are tighter on average

• We designed a quantile regression spline neural network which can fully 
characterize the predictive distribution for a given input

• Applied these ideas to lipophilicity benchmark and observed a 15-22% 
reduction in average 90% prediction interval length against baselines with 
matching marginal coverage

42

Summary of presentation
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